# Compressed Liquid Densities, Saturated Liquid Densities, and Vapor Pressures of 1,1-Difluoroethane

## Dana R. Defibaugh\* and Graham Morrison<sup>†</sup>

Thermophysics Division, Chemical Science & Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

The compressed liquid densities and vapor pressures of 1,1-difluoroethane (HFC-152a) have been measured, correlated, and compared with other data. The liquid densities were measured with a combined standard uncertainty of  $\pm 0.05\%$  using a vibrating tube densimeter over a temperature range of 243 K to 371 K and at pressures from near the saturated vapor pressure to 6500 kPa; thus the data extend nearly to the critical point ( $T_c = 386.41$  K and  $P_c = 4514.7$  kPa). The vapor pressures were measured with a combined standard uncertainty of  $\pm 0.02\%$  using a stainless steel ebulliometer in the temperature range from 280 K to 335 K. Saturated liquid densities were calculated by extrapolating the compressed liquid isotherms to the saturation pressure.

### Introduction

We have measured the compressed liquid density and the vapor pressure of 1,1-difluoroethane (HFC-152a). We report measurements in the compressed liquid region along 29 isotherms between 243 K and 371 K, with pressure in the range 700 kPa to 6500 kPa. The apparatus used to determine density was a vibrating tube densimeter. The densimeter had been calibrated in the range of 273 K to 373 K when under vacuum ( $\approx$ 1 Pa) and when filled with distilled, degassed water. Propane was used as the calibrating fluid in the range 243 K to 273 K. Details of the calibration can be found in reference Defibaugh and Morrison (1992). The combined standard uncertainty of the compressed liquid densities is estimated to be 0.05% in density. The data representing compressed liquid states  $(P \rho T)$  for HFC-152a have been correlated with a 14-term equation. The correlation represents the compressed liquid density of this work to within  $\pm 0.02\%$  except in the nearcritical temperature region.

The saturation pressures for HFC-152a were determined using a stainless steel ebulliometer. The vapor pressures ranged from 350 kPa to 1550 kPa, which correspond to temperatures from 280 K to 335 K. The vapor pressures are compared with other laboratories through a vapor pressure correlation for HFC-152a developed recently by Silva and Weber (1993). The vapor pressures of this work agree with other labs to within  $\pm 0.15\%$  in pressure. Compressed liquid isotherms are extrapolated to the saturation pressure to determine the saturation densities. The saturation densities are correlated and then compared with other reference data. The combined standard uncertainty of the saturation densities is  $\pm 0.1\%$ .

## **Apparatus and Procedure**

1,1-Difluoroethane (HFC-152a) was obtained from PCR Inc., Gainesville, FL, and was received from the supplier with a stated purity of 99.9%. The purity of the sample was verified by gas chromatography; no further purity analysis or attempts to purify were considered. Brand names and commercial sources of materials and instruments, when noted, are given for scientific completeness. Such information does not constitute a recommendation

<sup>†</sup> Deceased.

by the National Institute of Standards and Technology nor does it suggest that these products or instruments are the best for the described application.

Densimeter. A stainless steel vibrating tube densimeter designed by Anton PAAR was used to measure compressed liquid densities (see Figure 1). The temperature of the apparatus was regulated by a thermostated bath. The bath circulated a water/ethylene glycol mixture through a steel heat exchanger surrounding the vibrating tube. The steel heat exchanger was in an air-filled well-insulated enclosure. A platinum resistance thermometer (PRT) was used to monitor the temperature of the water/ethylene glycol mixture exiting the heat exchanger. The manifold outside the thermostated enclosure consisted of mercury reservoirs and a mercury-filled manometer/separator. The manometer separated the refrigerant sample from the pressurizing argon gas. A glass capillary in the manometer/separator allowed us to locate the mercury level. The pressure of the system was always maintained approximately 100 kPa above the vapor pressure of HFC-152a at any given temperature. When the vibrating tube was below room temperature, the low-pressure limit of the density measurements was determined by the vapor pressure at the temperature of the external manifold (room temperature). The pressure of the argon was monitored with a quartz pressure transducer with a standard uncertainty of  $\pm 0.5$ kPa.

Before the apparatus was filled, it was rinsed with ethanol and then acetone to remove residue from previous experiments. The apparatus was then evacuated and cooled to 273 K. Mercury was drawn into the reservoirs and the manometer/separator. The valve connecting the two sides of the separator was closed. Finally, refrigerant sample was condensed into the vibrating tube and separator manifold. Once the sample was loaded, the argon pressure was raised, and the valve separating the sides of the manifold was opened while monitoring the location of the mercury level to ensure that the apparatus was indeed completely filled with liquid. Once the apparatus was filled, compressed liquid densities for HFC-152a were measured.

**Ebulliometer.** A stainless steel ebulliometer was used to measure vapor pressures (see Figure 2). The apparatus consisted of a boiler, a condenser, and a cold trap. Liquid in the boiler was heated by passing electrical current

<sup>\*</sup> e-mail: Dana@Tiber.NIST.GOV.



Figure 1. Schematic diagram of vibrating tube densimeter.



Figure 2. Schematic diagram of ebulliometer apparatus.

through a heating ribbon wrapped around the bottom exterior of the boiler. As the liquid boiled, heated vapor rose up from the boiler and entered the condenser. Thermocouples in various locations around the apparatus help monitor the temperature of the apparatus and its approach to thermal equilibrium. A PRT located between the boiler and condenser measured the condensing temperature of the fluid within the apparatus. Cool water was circulated through the jacket of the condenser so that heated vapor coming from the boiler condensed and fell back into the boiler. A cold trap on top of the apparatus was filled with a dry ice/methanol slurry and acted as a safety mechanism to ensure the condensation of any vapor which might have passed through the condenser. A pressure controller located beyond the cold trap monitors and controls the helium pressure above the condensing HFC-152a.

Before the ebulliometer was loaded, it was evacuated, the cold trap was loaded with dry ice and methanol, and the water-cooled condenser was cooled to 273 K. Approximately 18 cm<sup>3</sup> of liquid sample was condensed into the boiler, and finally the system was pressurized with helium. Heat was applied to the boiler, and the temper-



**Figure 3.** Compressed liquid density data ( $\bigcirc$ ) and extrapolated saturated liquid densities ( $\square$ ) of this work.

ature of each thermocouple was monitored. Once the temperature of the three thermocouples located in the boiler agreed to within 2 K of the PRT, the apparatus was considered to be in equilibrium and a condensation temperature and pressure were recorded. The pressure of the system was then increased and the process of monitoring the thermocouples for equilibrium was repeated.

#### Results

**Compressed Liquid Density.** Compressed-liquiddensity measurements were made along isotherms ranging from 243 K to 371 K at pressures from 700 kPa to 6500 kPa. The densities, shown in Figure 3 and listed in Table 1, span the range from 9.7 mol·dm<sup>-3</sup> to 15.67 mol·dm<sup>-3</sup> (the molecular weight of HFC-152a is 66.051). The temperatures (ITS-90) have a standard uncertainty of  $\pm 0.01$  K; however, temperature gradients across the densimeter may have exceeded this at the highest and lowest temperatures. The pressures have a standard uncertainty of  $\pm 0.5$  kPa.

The compressed liquid densities were correlated with the following equation:

$$P = RT\rho + \frac{b_1\rho^6}{T} + e^{-(\rho/\rho_c)^2} \sum_{n=2}^7 a_n(T)\rho^{2n-1}$$
(1)

where *P* is in kPa, *T* is in Kelvin, and  $\rho$  is in mol·dm<sup>-3</sup>. The temperature dependence of the coefficients is given by:

| $b_1 = 0.948602920789893$                    |
|----------------------------------------------|
| $b_2 = -988500945.479363$                    |
| $b_3 = 24675727183.2342$                     |
| $b_4 = 2173873.88796000$                     |
| $b_5 = -794490707710.284$                    |
| $b_6 = -207002.729161860$                    |
| $b_7 = -41660911.4218338$                    |
| $b_8 = 1824.90878720446$                     |
| $b_9 = 201024904.188244$                     |
| $b_{10} = 0.0260101097956443$                |
| $b_{11}^{10} = -6558.55820796058$            |
| $b_{12}^{11} = 0.0195808782129117$           |
| $b_{13}^{12} = 11.1725470419356$             |
| $b_{14}^{10} = -1248.56261373225$            |
| 17                                           |
| R = 0.0831445  J/(kmol·K)                    |
| $ ho_{ m c}=5.571~{ m mol}\cdot{ m dm}^{-3}$ |
|                                              |

(Higashi et al., 1987)

| Table 1. | Compressed | Liquid | Densities | for | HFC-152a |
|----------|------------|--------|-----------|-----|----------|
|          |            |        |           |     |          |

| Table 1. Compressed Liquid Densities for HFC-152a |                  |                         |                    |                  |                        |                   |                  |                         |
|---------------------------------------------------|------------------|-------------------------|--------------------|------------------|------------------------|-------------------|------------------|-------------------------|
| <i>T</i> /K                                       | <i>P</i> /kPa    | $ ho/mol \cdot dm^{-3}$ | <i>T</i> /K        | <i>P</i> /kPa    | $ ho/mol\cdot dm^{-3}$ | <i>T</i> /K       | <i>P</i> /kPa    | $ ho/mol \cdot dm^{-3}$ |
| 243.088                                           | 699.8            | 15.527                  | 243.079            | 1000.2           | 15.536                 | 243.082           | 1500.6           | 15.549                  |
| 243.1                                             | 2000.5           | 15.561                  | 243.093            | 2501.4           | 15.574                 | 243.099           | 3002.4           | 15.586                  |
| 243.104                                           | 3502.8           | 15.599                  | 243.113            | 4002.7           | 15.611                 | 243.106           | 4503.9           | 15.623                  |
| 243.107                                           | 5004.8<br>6506 5 | 15.030                  | 243.095            | 5505.3<br>699.9  | 15.048                 | 243.093           | 10003.4          | 15.00                   |
| 246.678                                           | 1500.7           | 15.436                  | 246.665            | 2000.6           | 15.449                 | 246.657           | 2501.6           | 15.463                  |
| 246.68                                            | 3002.5           | 15.476                  | 246.67             | 3503             | 15.489                 | 246.667           | 4002.9           | 15.502                  |
| 246.662                                           | 4504             | 15.515                  | 246.664            | 5004.9           | 15.528                 | 246.657           | 5505.5           | 15.541                  |
| 246.653                                           | 6005.5           | 15.553                  | 246.659            | 6506.5           | 15.566                 | 249.407           | 699.8            | 15.326                  |
| 249.411                                           | 1000.3           | 15.335                  | 249.421            | 1500.6           | 15.348                 | 249.427           | 2000.6<br>3502 Q | 15.362                  |
| 249.429                                           | 4002.9           | 15.416                  | 249.442            | 4503.9           | 15.429                 | 249.434           | 5004.9           | 15.443                  |
| 249.449                                           | 5505.4           | 15.455                  | 249.457            | 6005.4           | 15.468                 | 249.459           | 6506.5           | 15.481                  |
| 254.078                                           | 699.8            | 15.175                  | 254.081            | 1000.2           | 15.184                 | 254.08            | 1500.6           | 15.199                  |
| 253.964                                           | 2000.5           | 15.217                  | 253.933            | 2501.5           | 15.233                 | 253.922           | 3002.4           | 15.247                  |
| 253.924                                           | 3302.9<br>5004 9 | 15.202                  | 253.91             | 4002.9           | 15.270                 | 200.92<br>253 933 | 4505.9           | 15.29                   |
| 253.946                                           | 6506.4           | 15.344                  | 259.631            | 699.7            | 14.993                 | 259.647           | 1000.2           | 15.002                  |
| 259.65                                            | 1500.6           | 15.018                  | 259.639            | 2000.5           | 15.034                 | 259.639           | 2501.4           | 15.05                   |
| 259.645                                           | 3002.3           | 15.065                  | 259.649            | 3502.8           | 15.08                  | 259.649           | 4002.8           | 15.095                  |
| 259.652                                           | 4503.8           | 15.11                   | 259.643            | 5004.7           | 15.125                 | 259.638           | 5505.2           | 15.14                   |
| 259.639                                           | 6005.2           | 15.154                  | 259.647            | 6506.2<br>1500 G | 15.168                 | 264.407           | 699.7<br>2000 4  | 14.834                  |
| 264.423                                           | 2501.3           | 14.893                  | 264.449            | 3002.2           | 14.80                  | 264.441           | 2000.4           | 14.926                  |
| 264.452                                           | 4002.7           | 14.942                  | 264.462            | 4503.8           | 14.957                 | 264.462           | 5004.7           | 14.973                  |
| 264.478                                           | 5505.2           | 14.988                  | 264.473            | 6005.3           | 15.004                 | 264.475           | 6506.2           | 15.019                  |
| 269.254                                           | 699.8            | 14.671                  | 269.263            | 1000.2           | 14.682                 | 269.264           | 1500.5           | 14.7                    |
| 269.267                                           | 2000.6           | 14.718                  | 269.258            | 2501.5           | 14.735                 | 269.258           | 3002.4           | 14.753                  |
| 269.263                                           | 5004.9           | 14.821                  | 269.263            | 4002.8<br>5505.4 | 14.837                 | 269.251           | 4303.9           | 14.804                  |
| 269.248                                           | 6506.5           | 14.87                   | 272.58             | 699.8            | 14.558                 | 272.592           | 1000.2           | 14.569                  |
| 272.592                                           | 1500.6           | 14.588                  | 272.59             | 2000.6           | 14.606                 | 272.594           | 2501.5           | 14.625                  |
| 272.59                                            | 3002.4           | 14.643                  | 272.596            | 3502.9           | 14.661                 | 272.612           | 4002.9           | 14.678                  |
| 272.616                                           | 4503.9           | 14.695                  | 272.616            | 5004.9<br>6506 5 | 14.713                 | 272.637           | 5505.4<br>600.6  | 14.729                  |
| 274.135                                           | 1000.1           | 14.516                  | 274.131            | 1500.5           | 14.536                 | 274.127           | 2000.3           | 14.505                  |
| 274.135                                           | 2501.3           | 14.573                  | 274.129            | 3002.2           | 14.592                 | 274.129           | 3502.7           | 14.61                   |
| 274.127                                           | 4002.8           | 14.628                  | 274.124            | 4503.8           | 14.646                 | 274.125           | 5004.8           | 14.664                  |
| 274.125                                           | 5505.3           | 14.682                  | 274.119            | 6005.3           | 14.699                 | 274.119           | 6506.3           | 14.716                  |
| 278.899                                           | 699.8<br>2000 5  | 14.339                  | 278.902            | 1000.2<br>2501.5 | 14.331                 | 278.898           | 1500.7           | 14.371                  |
| 278.893                                           | 3502.9           | 14.352                  | 278.891            | 4002.8           | 14.471                 | 278.885           | 4503.8           | 14.432                  |
| 278.882                                           | 5004.8           | 14.509                  | 278.88             | 5505.3           | 14.527                 | 278.878           | 6005.3           | 14.546                  |
| 278.881                                           | 6506.3           | 14.564                  | 283.726            | 699.8            | 14.166                 | 283.729           | 1000.2           | 14.179                  |
| 283.729                                           | 1500.6           | 14.201                  | 283.728            | 2000.5           | 14.223                 | 283.729           | 2501.4           | 14.245                  |
| 283.73                                            | 3002.4           | 14.200                  | 283.73             | 3502.8           | 14.280                 | 283.727           | 4002.8<br>5505-3 | 14.307                  |
| 283.723                                           | 6005.3           | 14.386                  | 283.73             | 6506.3           | 14.406                 | 288.618           | 699.7            | 13.987                  |
| 288.629                                           | 1000.2           | 14.001                  | 288.645            | 1500.7           | 14.024                 | 288.647           | 2000.6           | 14.048                  |
| 288.646                                           | 2501.4           | 14.071                  | 288.65             | 3002.3           | 14.093                 | 288.651           | 3502.8           | 14.115                  |
| 288.649                                           | 4002.8           | 14.138                  | 288.651            | 4503.8           | 14.159                 | 288.651           | 5004.8           | 14.181                  |
| 293 58                                            | 699 8            | 13 801                  | 293 582            | 1000.3           | 13.816                 | 293 585           | 1500.3           | 14.243                  |
| 293.588                                           | 2000.5           | 13.867                  | 293.588            | 2501.4           | 13.892                 | 293.587           | 3002.3           | 13.916                  |
| 293.59                                            | 3502.8           | 13.94                   | 293.591            | 4002.8           | 13.964                 | 293.588           | 4503.8           | 13.987                  |
| 293.589                                           | 5004.7           | 14.01                   | 293.588            | 5505.2           | 14.032                 | 293.585           | 6005.2           | 14.055                  |
| 293.591                                           | 6506.3           | 14.076                  | 298.544            | 699.7<br>1500 5  | 13.609                 | 298.544           | 1000.2           | 13.625                  |
| 298.544                                           | 2501.4           | 13.708                  | 298.538            | 3002.3           | 13.734                 | 298.543           | 2000.4           | 13.76                   |
| 298.543                                           | 4002.7           | 13.785                  | 298.543            | 4503.8           | 13.81                  | 298.54            | 5004.7           | 13.835                  |
| 298.541                                           | 5505.2           | 13.859                  | 298.542            | 6005.2           | 13.883                 | 298.543           | 6506.3           | 13.906                  |
| 303.506                                           | 799.9            | 13.416                  | 303.5              | 1000.1           | 13.428                 | 303.513           | 1500.6           | 13.458                  |
| 303.513                                           | 2000.5           | 13.488                  | 303.515            | 2501.4           | 13.517                 | 303.514           | 3002.3           | 13.546                  |
| 303.515                                           | 5002.8<br>5004 8 | 13.655                  | 303.513            | 5505 2           | 13.681                 | 303.510           | 4005.8<br>6005.2 | 13.706                  |
| 303.515                                           | 6506.3           | 13.732                  | 308.396            | 900.1            | 13.22                  | 308.396           | 1000.1           | 13.227                  |
| 308.399                                           | 1500.5           | 13.26                   | 308.396            | 2000.4           | 13.293                 | 308.398           | 2501.4           | 13.324                  |
| 308.4                                             | 3002.3           | 13.356                  | 308.401            | 3502.8           | 13.386                 | 308.403           | 4002.7           | 13.416                  |
| 308.398                                           | 4503.8           | 13.445                  | 308.403            | 5004.8           | 13.473                 | 308.399           | 5505.2           | 13.501                  |
| 313 285                                           | 1500 G           | 13.529                  | 308.404<br>313 984 | 2000.5           | 13.000                 | 313.283           | 2501 4           | 13.018                  |
| 313.289                                           | 3002.3           | 13.159                  | 313.292            | 3502.8           | 13.192                 | 313.291           | 4002.8           | 13.224                  |
| 313.29                                            | 4503.8           | 13.256                  | 313.29             | 5004.7           | 13.287                 | 313.291           | 5505.2           | 13.317                  |
| 313.293                                           | 6005.3           | 13.346                  | 313.288            | 6506.3           | 13.376                 | 318.319           | 1500.6           | 12.833                  |
| 318.321                                           | 2000.5           | 12.873                  | 318.321            | 2501.4           | 12.911                 | 318.321           | 3002.3           | 12.949                  |
| 318.322                                           | 5004.7           | 13.089                  | 318.323            | 5505.1           | 13.122                 | 318.321           | 6005.2           | 13.154                  |

| Table 1 (Continued) |               |                        |             |               |                        |             |        |                         |
|---------------------|---------------|------------------------|-------------|---------------|------------------------|-------------|--------|-------------------------|
| <i>T</i> /K         | <i>P</i> /kPa | ρ/mol∙dm <sup>−3</sup> | <i>T</i> /K | <i>P</i> /kPa | ρ/mol∙dm <sup>−3</sup> | <i>T</i> /K | P/kPa  | $ ho/mol \cdot dm^{-3}$ |
| 318.321             | 6506.2        | 13.186                 | 323.189     | 1600.6        | 12.617                 | 323.191     | 2000.4 | 12.652                  |
| 323.192             | 2501.4        | 12.695                 | 323.194     | 3002.3        | 12.737                 | 323.185     | 3502.7 | 12.777                  |
| 323.184             | 4002.7        | 12.816                 | 323.186     | 4503.8        | 12.854                 | 323.187     | 5004.7 | 12.891                  |
| 323.185             | 5505.2        | 12.927                 | 323.185     | 6005.2        | 12.962                 | 323.185     | 6506.2 | 12.996                  |
| 328.051             | 1700.6        | 12.392                 | 328.055     | 2000.5        | 12.421                 | 328.058     | 2501.4 | 12.469                  |
| 328.058             | 3002.3        | 12.515                 | 328.057     | 3502.7        | 12.56                  | 328.056     | 4002.7 | 12.603                  |
| 328.058             | 4503.8        | 12.645                 | 328.056     | 5004.7        | 12.685                 | 328.057     | 5505.2 | 12.725                  |
| 328.055             | 6005.2        | 12.763                 | 328.055     | 6506.2        | 12.8                   | 332.892     | 1800.6 | 12.155                  |
| 332.894             | 2000.5        | 12.178                 | 332.896     | 2501.4        | 12.232                 | 332.897     | 3002.3 | 12.284                  |
| 332.897             | 3502.8        | 12.334                 | 332.899     | 4002.7        | 12.382                 | 332.897     | 4503.7 | 12.428                  |
| 332.9               | 5004.7        | 12.473                 | 332.897     | 5505.2        | 12.516                 | 332.897     | 6005.2 | 12.558                  |
| 332.9               | 6506.2        | 12.599                 | 337.894     | 1900.5        | 11.896                 | 337.902     | 2000.5 | 11.908                  |
| 337.905             | 2501.4        | 11.97                  | 337.902     | 3002.3        | 12.03                  | 337.903     | 3502.8 | 12.087                  |
| 337.903             | 4002.8        | 12.141                 | 337.903     | 4503.8        | 12.193                 | 337.905     | 5004.7 | 12.243                  |
| 337.905             | 5505.2        | 12.291                 | 337.905     | 6005.2        | 12.337                 | 337.903     | 6506.2 | 12.383                  |
| 342.87              | 2000.5        | 11.618                 | 342.872     | 2501.4        | 11.692                 | 342.874     | 3002.4 | 11.761                  |
| 342.877             | 3502.7        | 11.826                 | 342.868     | 4002.7        | 11.888                 | 342.863     | 4503.7 | 11.948                  |
| 342.863             | 5004.7        | 12.004                 | 342.864     | 5505.2        | 12.058                 | 342.864     | 6005.1 | 12.11                   |
| 342.865             | 6506.2        | 12.159                 | 347.793     | 2200.7        | 11.339                 | 347.794     | 2501.4 | 11.391                  |
| 347.799             | 3002.4        | 11.473                 | 347.801     | 3502.7        | 11.549                 | 347.798     | 4002.6 | 11.621                  |
| 347.803             | 4503.7        | 11.688                 | 347.803     | 5004.6        | 11.753                 | 347.803     | 5505.1 | 11.814                  |
| 347.804             | 6005          | 11.872                 | 347.801     | 6506.1        | 11.928                 | 352,694     | 2501.5 | 11.058                  |
| 352.695             | 3002.3        | 11.158                 | 352.698     | 3502.7        | 11.25                  | 352.698     | 4002.6 | 11.334                  |
| 352.688             | 4503.6        | 11.414                 | 352.692     | 5004.6        | 11.488                 | 352.693     | 5505.1 | 11.557                  |
| 352.692             | 6005          | 11.623                 | 352.693     | 6506.1        | 11.686                 | 357.563     | 2701.8 | 10.733                  |
| 357.566             | 3002.3        | 10.807                 | 357.567     | 3502.7        | 10.921                 | 357.568     | 4002.6 | 11.024                  |
| 357.568             | 4503.6        | 11.118                 | 357.568     | 5004.6        | 11.204                 | 357.573     | 5505   | 11.285                  |
| 357.572             | 6005          | 11.361                 | 357.57      | 6506.1        | 11.432                 | 362.405     | 3002.2 | 10.403                  |
| 362.411             | 3502.7        | 10.551                 | 362.41      | 4002.6        | 10.68                  | 362.407     | 4503.7 | 10.795                  |
| 362.407             | 5004.7        | 10.9                   | 362.411     | 5505.2        | 10.995                 | 362.41      | 6005.2 | 11.083                  |
| 362.408             | 6506.2        | 11.165                 | 367.275     | 3202.7        | 9.988                  | 367.279     | 3502.8 | 10.11                   |
| 367.28              | 4002.8        | 10.284                 | 367.281     | 4503.8        | 10.431                 | 367.284     | 5004.8 | 10.56                   |
| 367.281             | 5505.2        | 10.676                 | 367.282     | 6005.3        | 10.78                  | 367.283     | 6506.3 | 10.877                  |
| 371.331             | 3602.9        | 9.704                  | 371.333     | 4002.8        | 9.892                  | 371.336     | 4503.8 | 10.084                  |
| 371.338             | 5004.8        | 10.245                 | 371.336     | 5505.2        | 10.384                 | 371.334     | 6005.2 | 10.507                  |
| 371.334             | 6506.3        | 10.619                 | 0.1000      |               | 10.001                 | 0.1.001     |        | 10.007                  |



**Figure 4.** Compressed liquid density deviations (%) from eq 1: this work  $(\bigcirc)$ ; Tillner-Roth and Baehr, 1993  $(\Box)$ ; Blanke and Weiss, 1992  $(\triangle)$ .

Equation 1 is a correlation of only the compressed liquid data. The terms in eq 1 are a subset of the terms in the widely used MBWR equation of state used by Jacobsen and Stewart (1973). The deviations of the densities from eq 1 are shown in Figure 4. Equation 1 can reproduce the density of this work to  $\pm 0.02\%$  except at the highest temperature where the isotherm begins to curve due to the proximity of the critical point,  $T_c = 386.41$ , Higashi et al. (1987). A deviation greater than 0.02% at 371 K is attributed to two factors: the inability of eq 1 to model the very curved isotherms near the critical point, and the high sensitivity of the density to uncertainties in the temperature and pressure measurements close to the critical point.

Table 2. Vapor Pressures for HFC-152a

1

| _ |             |               |             |               |
|---|-------------|---------------|-------------|---------------|
| _ | <i>T</i> /K | <i>P</i> /kPa | <i>T</i> /K | <i>P</i> /kPa |
|   | 281.442     | 351.91        | 318.650     | 1049.98       |
|   | 288.967     | 449.93        | 322.221     | 1149.99       |
|   | 295.452     | 550.01        | 325.565     | 1249.99       |
|   | 301.090     | 649.99        | 328.714     | 1349.96       |
|   | 306.113     | 750.01        | 331.689     | 1449.66       |
|   | 310.652     | 850.03        | 334.518     | 1549.62       |
|   | 314.808     | 950.00        |             |               |
|   |             |               |             |               |

The data of Blanke and Weiss (1992) agree with this work to 0.02% above 260 K. The data of Tillner-Roth and Baehr (1993) also agree very well with this work with an average deviation of 0.045% above 260 K. At temperatures below 260 K deviations increase to 0.1%.

*Vapor Pressures.* Vapor pressure measurements were made between 280 K and 335 K and are listed in Table 2. The data fall within a region where there are few published data. The vapor pressures were compared to a Wagner type vapor pressure correlation, eq 2, established by Silva and Weber (1993).

$$\ln \frac{P}{P_{c}} = \frac{T_{c}}{T} [A_{1}\tau + A_{2}\tau^{1.5} + A_{3}\tau^{2.5} + A_{4}\tau^{5}]$$
(2)  
$$A_{1} = -7.3943 \qquad T_{c} = 386.41 \text{ K}$$
  
$$A_{2} = 1.6466 \qquad P_{c} = 4514.73 \text{ kPa}$$
  
$$A_{3} = -2.0461 \qquad \tau = 1 - T/T_{c}$$
  
$$A_{4} = -2.8248$$

Figure 5 shows that the results from this work agree with eq 2 to  $\pm 0.015\%$  in pressure and smoothly bridge the



**Figure 5.** Vapor pressure difference (%) from eq 2 proposed by Silva and Weber, 1993: this work ( $\bigcirc$ ); Silva and Weber, 1993 ( $\square$ ); Blanke and Weiss, 1992 ( $\triangle$ ); Higashi et al., 1987 (\*); Baehr and Tillner-Roth, 1991 (+); Tamatsu et al., 1992 ( $\diamondsuit$ ).

Table 3. Saturated Liquid Densities of HFC-152a

| <i>T</i> /K | P/kPa | $ ho/{ m mol}{\cdot}{ m dm}^{-3}$ | <i>T</i> /K | ₽⁄kPa  | $ ho/mol \cdot dm^{-3}$ |
|-------------|-------|-----------------------------------|-------------|--------|-------------------------|
| 243.106     | 77.0  | 15.511                            | 308.381     | 799.1  | 13.214                  |
| 246.676     | 90.7  | 15.397                            | 313.280     | 912.6  | 13.011                  |
| 249.455     | 102.7 | 15.307                            | 318.308     | 1041.4 | 12.795                  |
| 253.944     | 124.7 | 15.162                            | 323.167     | 1178.3 | 12.579                  |
| 259.653     | 157.9 | 14.975                            | 328.036     | 1328.6 | 12.353                  |
| 264.452     | 190.8 | 14.816                            | 332.874     | 1491.7 | 12.119                  |
| 269.271     | 229.0 | 14.653                            | 337.873     | 1675.6 | 11.865                  |
| 272.600     | 258.7 | 14.540                            | 342.842     | 1874.7 | 11.599                  |
| 274.130     | 273.3 | 14.487                            | 347.771     | 2089.3 | 11.318                  |
| 278.889     | 322.8 | 14.322                            | 352.669     | 2320.6 | 11.020                  |
| 283.727     | 379.9 | 14.151                            | 357.548     | 2569.9 | 10.698                  |
| 288.636     | 445.4 | 13.974                            | 362.377     | 2836.4 | 10.350                  |
| 293.575     | 519.6 | 13.791                            | 367.256     | 3127.1 | 9.956                   |
| 298.534     | 603.2 | 13.603                            | 371.305     | 3385.9 | 9.586                   |
| 303.502     | 696.9 | 13.409                            |             |        |                         |

low-temperature data of Silva and Weber (1993) and the higher temperature data of Baehr and Tillner-Roth (1991).

**Saturated Liquid Densities.** Saturated liquid densities were deduced by evaluating eq 1 at the vapor pressures determined from eq 2 at temperatures where isotherms of compressed liquid were studied. The 29 saturated liquid densities are listed in Table 3. They were correlated with the following function:

$$\rho = B_1 + B_2 \tau^{1/3} + B_3 \tau^{2/3} + B_4 \tau + B_5 \tau^{4/3} \tag{3}$$

$$B_1 = 5.518774 \text{ mol·dm}^{-3} \qquad T_c = 386.41 \text{ K}$$
  

$$B_2 = 10.725938 \qquad \tau = 1 - T/T_c$$
  

$$B_3 = 3.6452398$$
  

$$B_4 = -0.8747102$$
  

$$B_5 = 2.7166140$$

Equation 3 reproduces the saturation densities of this work with a standard deviation of  $\pm 0.02\%$ ; see Figure 6. The deviations below 260 K are consistent in sign and magnitude with the deviations seen in Figure 4 for the compressed liquid. The data of Tillner-Roth and Baehr (1993), Blanke and Weiss (1992), and Holcomb et al. (1993) all agree with the smoothed data of this work to within  $\pm 0.04\%$  in density throughout most of the temperature range. The data of Sato et al. (1987) show slightly more scatter. This level of agreement between data taken in different laboratories using different techniques is remarkably good.



**Figure 6.** Saturated liquid density difference (%) from eq 3: this work ( $\bullet$ ); Tillner-Roth and Baehr, 1993 ( $\Box$ ); Blanke and Weiss, 1992 ( $\triangle$ ); Holcomb et al., 1993 ( $\bigcirc$ ); Sato et al., 1987 ( $\diamondsuit$ ).

Equation 3 extrapolates to a critical density of 5.519 mol·dm<sup>-3</sup>. Higashi et. al. (1987) report a critical density of 5.571 mol·dm<sup>-3</sup>. Holcomb et al. (1993) report 5.584 mol·dm<sup>-3</sup> for the critical density of HFC-152a. We consider this to be reasonable agreement given that our extrapolated critical density does not rely on measurements of the density of the saturated vapor.

## Summary

We have measured the compressed liquid density and saturation pressure for HFC-152a. The compressed liquid surface ( $P\rho T$ ) has been correlated. The vapor pressures were measured between 280 K and 335 K and agree very well with the vapor pressure correlation developed recently by Silva and Weber (1993). The saturation pressures at 29 different temperatures were used in the compressed liquid density correlation to extrapolate saturated liquid densities. Finally, the saturated liquid densities were correlated. The equations presented in this paper have been chosen only for convenience in correlating data sets. The functional forms of some of the equations traditionally do not perform well at or near the critical point. Caution should be used when evaluating any equation outside the temperature and/or pressure range of the underlying data.

#### **Literature Cited**

- Baehr, H. D.; Tillner-Roth, R. Measurement and Correlation of the Vapor Pressures of 1,1,1,2-Tetrafluoroethane (R134a) and 1,1-Difluoroethane (HFC-152a). *J. Chem. Thermodyn.* **1991**, *23*, 1063–1068.
- Blanke, W.; Weiss, R. Isochoric (p,v,T) Measurements on  $C_2H_4F_2$  (HFC-152a) in the Liquid State from the Triple Point to 450K and at Pressures up to 30 MPa. *Fluid Phase Equilib.* **1992**, *80*, 179–190.
- Defibaugh, D. R.; Morrison, G. Compressed Liquid Densities and Saturation Densities of Chlorodifluoromethane (R22). J. Chem. Eng. Data 1992, 37, 107–110.
- Higashi, Y.; Ashizawa, M.; Kabata, Y.; Majima, T.; Uematsu, M.; Watanabe, K. Measurements of Vapor Pressure, Vapor-Liquid Coexistence Curve and Critical Parameters of Refrigerant 152a. JSME Int. J. 1987, 30, 1106–1112.
- Holcomb, C. D.; Niesen, V. G.; VanPoolen, L. J.; Outcalt, S. L. Coexisting Densities, Vapor Pressures and Critical Densities of Refrigerants R-32 and R-152a at 300–385K. *Fluid Phase Equilib.* 1993, *91*, 145–157.
- Jacobsen, R. T.; Stewart, R. B. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63 K to 2000 K with Pressures to 10,000 bar. J. Phys. Chem. Ref. Data 1973, 2, 757– 922
- Sato, H.; Uematsu, M.; Watanabe, K. Saturated Liquid Density of 1,1-Difluoroethane (r152a) and Thermodynamic Properties Along the Vapor-Liquid Coexistence Curve. *Fluid Phase Equilib.* 1987, 36, 167–181.

- Silva, A. M.; Weber, L. A. Ebulliometric Measurement of the Vapor Pressure of 1-Chloro-1,1-difluoroethane and 1,1-Difluoroethane. *J. Chem. Eng. Data* **1993**, *38*, 644–646.
- Tamatsu, T.; Sato, T.; Sato, H.; Watanabe, K. An Experimental Study of Thermodynamic Properties of 1,1-Difluoroethane. Int. J. Thermophys. 1992, 13, 985–997.
- Tillner-Roth, R.; Baehr, H. D. Measurements of Liquid, Near-Critical, and Supercritical  $(p,\rho,T)$  of 1,1,1,2-tetrafluoroethane (R134a) and of 1,1-difluoroethane (HFC-152a). *J. Chem. Thermodyn.* **1993**, *25*, 277–292.

Received for review December 13, 1995. Accepted February 16, 1996. The development and construction of the ebulliometer was supported in part by the Division of Engineering and Geosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-A105-88ER13823. The acquisition and analysis of the data were supported in part by the Naval Surface Warfare Center under Contract No. N61533-93-F-0284.  $\otimes$ 

#### JE9503158

<sup>®</sup> Abstract published in Advance ACS Abstracts, April 1, 1996.